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SUMMARY

We first solve the equation dX + aXdt = dN, where dN

represents a Poisson process, and then generalize to a Levy

process. Finally, we solve a linear partial differential equa-

tion DX =dL in strong distribution, meaning that the second

member dL is a distribution process, generalization of Levy

process on IR. The results are then applied to wave propa-

gation in underwater acoustics, and spatial'correlation is

determined.
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INTRODUCTION

The theory of linear random fields is well developed; for example S.

Badrikian and S. Chevet [21 consider the cylindrical measures and the associ-

ated linear random field. Some applications to economy and industry are

presented in S. Ben Soussan [3]. We consider the linear random process X

which is the solution of a linear partial differential equation formally

written DX = dT, where dT is a random process; in the simplest case dT is

white noise. The equation Dp = 0 in the last chapter of this paper will be

the propagation equation of the pressure p in deep sea water. We consider

only linearized propagation equation from general ones (cf. Poirde [111); our

equation is thus an approximation in the sea medium. In D. de Brucq [4], the

second member of the equation is a Wiener measure or Gaussian measure, denoted

by dW, defined on S(R4 ) the space of indefinitely differentiable functions on

R4 decreasingly quickly. The second member describes the random approximation.

This equation is written

A 12 2 2 =t Ap = dW
c 2t

2  c

where A is the Laplacian in R 3. The solution in the sense of strong distri-

bution meaning satisfies for any f of S( )R 4

p(f) = f [u] dW where F is the Fourier transform on R 4

and T its inverse and where A is the function defined by the equality F.D =

AF. In this particular case A(w,x) = 12 (W)Ix
2-[k(w)-iy(w)] 2 } where k is the

wave number, y is the absorption. By hypothesis, for any f and g of S(I ) , the

correlation of the noise dW is r(f,g) = E(W(f)W(g)) = a2ffgdx with 2 a normali-

zation constant and dA Lebesgue measure on R 4 . The spatial correlation s at

a given frequency v = of the pressure p is given (cf. Th 111-3-7) by:
27t
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here Z is the distance between the points where the pressure is measured; by

physical approximation 12 may be taken equal to 1.

For k = 0, the experimental spectral density function of the random

fluctuations of the pressure in deep sea satisfy to a good approximation the

relation
22

s(W,O) = 7T0
11 212 Y

In the ocean, point processes and Poisson processes dN appear to be more

accurate than Gaussian processes to describe the random sources of the noise.

We generalize as much as possible to intrcAuce a Levy linear process dL as

second member of the equation. The expression s(w,k) does not change with

that extension.

In the first section, we explain the method with the linear differential

equation

dX + aXdt = dN a > 0 (1)

where dN is the centered Poisson process. We compute the characteristic func-

tion of the X process so that the Gaussian or the Poisson laws of the forcing

term can be separated. Not withstanding the correlation function r of X and

in the stationary situation the spectral density power function are given.

In the second section, we introduce a Levy process L with stationary incre-

ments and recall a decomposition theorem for this indefinitely divisible pro-

cess. Then we solve equation (1) using L as forcing term. We are now in the

situation to consider spatio-temporal problems. In the third section, we use

general theorems (A. Badrikian il]) to construct a measure L on S(R 4 ) general-

ization of the Levy processes. We solve in the sense of strong distribution

the equation DX : dL. The case where L is Gaussian measure is known (D. de
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Brucq and C. Olivier [51). Poisson measure is well known. (J. Neveu [10]) but

DX = dL with L Poisson measure is new, a fortiori with L our generalization of

a Levy process.

Finally, we apply the results to the propagation equation and we obtain thc

spatial correlation at a given frequency.

Some classical notations and results will be useful. We will write the

Fourier transform

F(f)(z) f eiz'Z >f(x) dz where the function f is integrable

IRn

and where <z,Z> is the scalar product in Rn . In the spatio-temporal appli-

cation of propagation, for physical reasons

F(f)(w,&,T1, ) f e(-wt+ x+nY+E)f(t,x,y,z)dtdxdydz
IR4

Fourier transformations are isomorphism of distribution spaces S(R n ) , S(R4)

The distributions space S(R n) is nuclear and countably semi-normed;

these notions are for example defined in I.M. Gelfand and N. Yu. Vilenkin [6].

We denote by S this space and S' its topological dual, the tempered distri-

bution space. The topology of S is defined by the semi-norms:

Vk, N c IN, s (f )  sup I(l+Izla)k af(z)I
kN z 1kn

we have the topological inclusion D c S c LP with D the space of indefinitely

n
derivable functions with compact support in R

n
If r is a real or complex function on Rn, continuous in zero and of

positive definite type then the Bochner theorem asserts the existence of a

bounded positive measure p such as

Vt C Rn r(t) = feiVtdp(v)

The random processes of the first two paragraphs are defined on a probability

n nspace (0,A,P). We denote by R the tribe of the borelians of In



-4-

I. SOLUTION OF THE EQUATION dX + aXdt = dN

We take a to be strictly positive real number and N to be a Poisson

process.

1.1 Poisson Processes

Consider a family of random variables N(t1,t2 ) with T2 E R I <T

Each has Poisson law and represents the number of discontinuities of a random

phenomenon in the interval [T1,'2]. Let O(T) be a non-decreasing function

defined by the relation

T,

We suppose a continuous on R so a is almost bounded. There exists a sequence

(T ,nEIN) of intervals such as

nI

a) Tn c T n+ and UnT n = R

b) f do(z) <
T

n

The Poisson process N of parameter a, is the family of random variables:

N(T) = N(O,T) for T > 0 and

N(T) =-N(O,T) for T < 0

The centered Poisson process N is

VT IR N(T) = N(T) - o(T) and we write

dN = dN - do

The solution X of the equation

dX + a X dt = dN is

Vt EIR Xt) =ft 00-a (t-T)dN(T)Vt i) X(t) = .®

The integral is the almost sure limit of ftwhen t converges

to -.



We suppose that f te (t-t)da(T) < - and also that t we 2 a(t )do(T) <

Since X is a sccond order process, straightforward computation gives

E(X2 t)) = ft e- 2a(tT) do(T) + [ft e-a(t-T) do(T)2

and the variance is

E(X2 (t))-[E(X(t))]2 f= t e-2a(t-T)do(T).

For the centered Poisson process N, the solution

Vt E IR X(t) = ft e-a(t-)dN(T) is centered and

E(X(t) 2 )  ft e- 2 a(t-T)do(T)

if N has stationary increments then o is a Haar measure on R and do X0dT

with d-r Lebesgue measure and X0 constant. For X0 = 1, E(N(t)
2) =t and

2 ft e 2a(t)dT. If we change the Poisson process N to a Gaussian

process W such as E(W(t)) = 0 and E(W(t) 2) = t then the solution is centered

and has the same variance.

The characteristic functions of N(T) and of N(t) are:

N(T) (u) E(eiUN(')) = exp[a(Tr)(exp iu-1)]

N(T) (u) = E(e () = exp[o(T)(exp(iu)-l-iu)I

1.2 Probability Law of the Solution X

Lemma 1.2.1: The complex function , defined by

VfL 2(IR ,R,da) pl(f) A f [eif(z)_li f(z)]do(z) is continuous on L2 ( ,R,da)

Proof: For every f of L2 (R,R,da), we have

I (f) I -_- iff2 (T)dour).

Then if (f n) converges to zero in L2 (R ,R,do) then J1(f ) converges to zero

in C .
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Theorem 1.2.2: There exists a linear centered process

11 (R ,R,du)

with characteristic function Vf c 1 (P ,R,do)

Proof: The application.

I L)2IE L 2(PR R,d-r) -~ N(T 2) N(T I E L 2(Q,A,P)

is isometric and conserves the scalar product. The family 1 -lT2 T(t ti~2c R

is total. We note N the unique extension. So for every f in

,12 RR,da), N(f) is a centered second order random variable. We have to

compute its characteristic function. For any expression

A 2'
f = a I [EP +1in L (R R1,da), we have N(f) = ja [N(T.j+ )-N(T )] and

Log 0 N(f) lo~g E(e ) N- ~ (

ia.
If~e J-1-i a.I [G(T r~ )-cx(z.)]

i~a I (T)

f f e j+1 -iiaj 1 T) do(r)R5 [tEj,r T

=f I e f(T)- I-i f(-E)}dax-r)I PR

By continuity, the expression is valid for any f of L 2(PR R,da). Q

Corollary 1.2.3: The characteristic function 0 x of the process X solution of

the equation

dX + aXdt =dN satisfies Vu, t E PR
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CX(t)(u) = E(eiuX(t)) = exp X(t)(u) with

OX(t)(u) = ft_[exp iu e a(t-T)-l-iu e-a(t T)Ida(T)

Proof: The expression of X(t) is

X(t) = fte-(t1)dN(T) with 1 !t~ e a(t-.)
in -a =(t-

in L2(R ,R,do) then uX(t) = N(u 1 () - a ( t - )

[-oo,t]

Corollary 1.2.4: The covariance function r of the process X solution of the

equation

dX + aXdt = dN satisfies Vtl,t 2 c IR

r(tl,t 2 ) E(X(tl)X(t 2 )) fl ^t 2  1t2 2 2 T )= N(1 2 ea t(

Proof: As X(t) = N( . e - a ( t - - ) ) we have
[-vo,t]

-a(t 1 -T) -a(t 2 -- r)

r(tl,t 2 ) = f 1 (T) e 1 (T) e do(r)
I [-[,t ,t2

Corollary 1.2.5: In the stationary case, the covariance function r is equal to

0 -altlI- t21

r(tl,t 2) -fa e , tlpt 2 in R , and the power spectral density function

is

1 0
y(v) - 27 2 2' y I

a +v

Proof: In that case da = X 0dT and r(tl,t2) =- e , the

Fourier transform of which is

I ivd X _-a0

e 2a e a = 1
a +v)



II. SOLUTION OF THE EQUATION dX + aXdt = dL

We generalize the forcing term to be a Levy process. We have to give

some essential properties of these processes (T. Hlida [9]).

11.1 Classical Properties of the Levy Processes

Definition 11.1.1: A process

L = (0,A,P, (L(t))R , R ,R) is a levy process if L satisfies

the properties

(a) L has independent increments.

(b) L is continuous in probability.

(c) L has trajectories almost surely continuous to the right an, .ith limit

to the left.

We will show how to obtain the generality of such processes.

Proposition 11.1.2: Let N {N ;l[a,b1 c 1 ) a family of processes. For

each interval I, the process NI is Poisson such that

(a) Vt E R E[NI(t)] = t n(I) where n is a positive measure on R satisfying

2
f, Z 2 dn(z) <

!:1>0 l+z

(b) For 11.12 disjoin (11 12 = 0) then the Poisson processes N 1N 2 are

independent.

(c) For every partition (Ik;k ( IN) of I=[a,b] then Vt e R N I(t) = tt)

almost surely.

As I - NI(t) is a measure with value in L°(0,A,P), we use the notation

flzNdz(t). The process

Vt IR L l(t) A lim f1 [z Ndz(t) - tz dn(z)]

p-* p>I p>- p+z
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is then defined and is a Levy process with stationary increments. The measure

n is the Levy measure of the process L The convergence with p is almost

surely uniform in t.

Remark 11.1.3: Every Poisson process is a Levy process and the vector span of

such processes is composed also of Levy processes. We need only to be able to

pass through the limits. Let N kk c E } a sequence of independent processes

with (Vt R B) I Okl(t) < -; is I zkNk a Levy process? If
k E N kEN

(Vt E I ) Zok(t) < - then [ ZkNk exists and is a Levy process.
kE k kEIN

Another construction is possible. Let N be a Poisson process and (nk,k Z)

a sequence of independent real random variables, independent of N. All the

discontinuities, the jumps of N, are equal to +1, we change the value +1 of the

kth jump in nk, random in R and we obtain a Levy process (T. Hida [91). We

recall the P. Levy's decomposition theorem:

Theorem 11.1.4: Let L be a Levy-process with stationary increments. Then

there exist two constants a, a of R , a Wiener procebs W, and a Levy process L1

such that Vt C V L(t) = a + W(t) + L1 (t). The decomposition is unique.

The forcing term of the equation dX + aXdt dL will be a Levy process so

that we generalize the Gaussian and the Poisson case.

11.2 Solution of the Equation DX + aXdt = dL

We assume the Levy process L with stationary increments and the Levy

measure n satisfying f z2dn(z) < -. We can suppose the process L centered.

F

Proposition 11.2.1: The process

(Vt E R )l, (t) A lim f l[zNdz(t) - tzda(z)]
r - o p>lzjs -

where Ndz is the Poisson process of Proposition 11.1.2 and f z2dn(z) <
R
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is a centered Levy process with stationary increments.

Proof: The limit f IzdNz exists (T. Ilida f9], p. 39) and f lzdn(z) -

p) P

f-:zin~ fPzdn(zj + fldn tz) the first two terms converge noting for-

- l1> I p
p

example that If-lzdn(z)j < f-lz 2dn(z) I_ f z2dn(z) < . For every p R,
p _p

ZNdz(t)] = t fp>JZ> z dn(z) so passing through the limit

p p

(1 C(t)) = 0.

Lemma 11.2.2: The complex function y2 define by VfE L2 ( ,R,dT)

2(f) = [exp i z f(T)-l-i z f(T)]dn(z)dT

L2
is continuous on L 2( ,R,dT).

Proof: For every f of L 2(R ,R,dT), we have

i 2 -'

1I2(f)Is- f -2z lf(T)l-dn(z)dT
' IzJ>O

2 f2 Z

fl f(T) 12d-r zl~olZ,2dn(z)

Theorem 11.2.3: If fz 2dn(z) < -, there exists a linear centered process

Lc = (Q,A,P,(L c(f)) 2 ,IR)c I (P ,R,dT[)

g2
with characteristic function Vf c L (RR,dT)

i L (f)

Pf _a E(e c ) = exp t2 (f)

Proof: We can suppose f z2 dn(z) = 1. For f I [0,t] ' the characteristic

function of
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L c(t) = lir f [N dz (t)-tzdn(z) ] is (Vu I)
p-,+o p>zH>

p

ft f [exp iu: 1 (T) - iuz 1 (t) dn(z)dT

IZIVO 10,t] [O'tJ

As ftf 0 Ii u z I (t) 12dn(z)dT < , the random variable L c(t) is second
I1>O fO't]C

order and E(LC(t) 2) = t fz> z2dn(z) = t. The same is true for t < 0 and

f = I t,0]  The process L c(t) is a Levy process; the map

1 L2(R ,R,dr) + L (i 2)-L E L2(Q,A,P)

is isometric and conserves the scalar product. The family I[ T 1,T 2 E R

is total. We note L the unique extension. So for every f inc

. ( ,R,dT) L ct) is a centered second order random variable. To obtain the

characteristic function f of Lc(t), we use a plain extension of the proof of

Theorem 1.2.2. p

Proposition 11.2.4: Let Vt E R L c(t) = lim f 1 [z N dz -tz dn(z) and

p2 z >T

suppose f z2 dn(z) < - then the process X solution of the equation

IzI>0
dX + a Xdt = dL with a > 0 is centered, second order, stationary with covariance

-alt 2 -t 1 2

Vt 1 , t 2 E IR r(tl,t 2 ) = E(X(t 2)X(t 1)) - e I z2 dn(z)
1 2122a l:V o

Proof: The solution X satisfies

Vtc E (t) = ft C-a(t-T)dLc(T). But with a > 0 the function

I -lt ea(t] ) is element of L
2 ( R,dT) then X(t) = Lc (la,t)e )

We need only the covariance function for Lc

Jc
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I t2t c9-tt2

e e 2at TiI> e~nz -a( r nz

IR 21

Corollary 11.2.5: The power spectral density function of the solution X is

V R___

1 __ 2

I The second order properties are the same for every Poisson, Gaussian, Levy

centered processes and for the processes, solutions of dX + aX dt dL .It
c

may be useful to have the law of probability of the solution X.

Corollary 11.2.6: The characteristic function 0 of the solution X is Vuz,

trR

x (t) (u) E(eU-" X(t)) = exp i1~t (u)

Xt)U)= ft_ f tz> exp i u z e-a(t-T) Id()d-

Proof: As uX(t) = N(u 1,t- tie -t.) ) we use Theorem 11.2.3. [

In Proposition 11.1.2, we had L Inon-centered Levy process with stationary

12

increments. The hypothesis f z2 dn(z) < -is equivalent to

IzI>O l+Z

f dn(z) < - and f z2 dn(z) < -. The process

1+(t) =_ lim f [z Nd(t - t- dn(z)] is defined and the new hypothesis
p- p Jzj II d +z2

f z 2dn(z) <-implies that f z dn(z) <-for the bounded measure on
1zjI1 I z 12:1

t z z I1;zIJ, then the decomposition
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+zL+(t) = lir f z Ndz(t)-tz dn(z)] + t f z. dn(z)
p- > pJZI>_ IZIL1 > +z

gives E(L+(t)) = t f z2 dn(z)

IzhL 1l+z

-( tzThe process L(t)Ndz(t ) - 2 dn(z)] is of any order and

S p

E(L-(t)) = t f z2dn(z) without any new assumption.
O<IzIli

22

Theorem 11.2.6: If f z dn(z) < - and if f z2dn(z) < -, the solution

1z1O 1+z2  R

X of the equation dX + aX dt = dL with a > 0, is a process with characteristic

function @x satisfying Vu, t E R

X(t) E(eiu X(t)) = exp X(t)(u) with

ia 2 2 + f [exp iuze -a(t-T) -1- iuz ea(tT) ]dn(z)dy

z >0 l+z2

where y and 6 are two constants.

Proof: By theorem 11.1.4 for every t of R

L(t) = y + 6 W(t) + Ll(t)

with the hypothesis f z2dn(z) < o , the process LI is second order and L1 (t) =
z

lc(t) + t z dn(z). Then the solution X satisfies
{zI>0 l+z2

=y + 6 ft e-a(t-T)dW(r) + fte-a(t-T)dLc(T)X(t) a dW r T

+ fte-a (t-T)dT f zs2 dn(z)

The four processes of the second member are independent. The characteristic

function of each one is known then

Siuy u26 2  
1

a 2 2a 
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ftj jj 0 [exi, iuze -a(t- T ) ] iuze-a(t-r) dn(z)dT
+fof ep ue] uz dnzd

+ ft I iue-a(t-) 2 dn(z)dT- jz1>O l+z2

A random variable Y has indefinitely divisible law if its characteristic

function satisfies V R

u 2 iuZ Iuz=
log 4(u) = i u m a + f (e -I -zI>0 l+z2 z

where m,a are constants and where the nondecreasing function I is such that

lim j(z) = 0, lim j(z) = 0, f-z 2 d Z(z) < - and flz 2 d(z) < (B.V. Gnedenko

and A.N. Kolmogorov [8]). For every t of JR the random variables L(t) is

indefinitely divisible.

Ill. SOLUTION OF THE EQUATION DX = dL IN STRONG DISTRIBUTION MEANING

The solution is known with forcing term L, a Gaussian measure (D. de

Brucq and C. Olivier [5]). It is not difficult to take for L a Poisson measure

defined in J. Neveu 191. We generalize as much as possible introducing

IL-measure, we should say Levy-measure but the expression is used with other

acceptance (Proposition 11.1.2).

We consider the space L 2(R ,R n,dX) where X is a positive measure on

(Rn ,R n). The Lebesgue measure will be denoted dX = d[. Fourier transform

is used in the theory and the space L2 (IR ,R ,dX) is composed of functions

with complex values.

Definition 111.1.1: Let n be a positive measure on (R ,R) with fz2dn(z)< -.

A IL -measure is a process

il = (Q,A,P ,(X(f)) ,C ,C)
a2 n n

L2(F ,R ,dA)

such as
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(a) f L2 (In ,Rn,dX) - IL (f) c L2 (Q,A,Pa) is linear

(b) (f) E~e' U= (f)) = f n [exp i z f(r)-l-i zf(z)]dn(z)dX(r){b)~ ~ ~ ~~I (f Ee i L(f)=nlzl>°

The characteristic function [L of the process IL is given by b.

Lemma 111.1.2: The complex function f L 2(R n ,R n,dX) - p(f) is continuous.

Proof: We have

lif) I ! lu 2 f If(t)1 2 dX(T) f Izi2 dn(z)

Proposition 111.1.3: The IL-measure is centered and the covariance F is the

function Vf,gE L2 (Rn  Rn ,dX)

I'(f,g) = E(IL (f) IL (g)) = J z2dn(z) ff()g(T)dX(-)

Proof: i(u f) has derivatives at first and second order in u R and
12f I ()2

(U f) = 2 f jf(r dA() + o(u 2

Then E([L (f)) = 0 and

EE (IlU, (f) 2) f z2dn(z) fn jf(r)1 
2dX(T)

zI>O R

with the linearity of IL, we obtain the covariance F

1II.2 Equivalent IL-Measure on (S',S')

We use a theorem for cylindrical measure (A. Badrikian [11). We restrict

the IL-process to the nuclear and countably semi-normed space S, dense

sub-space of L2 (R n ,R n ,dT), here we consider the Lebesgue-measure dx(T) = di.

The characteristic function PIL= exp i of the linear process ELis continuous

in t = 0. Then exists a probability P on (S',S') such as IL is equivalent

to the process

(So,S',v P, (<o f>) is T)

for every t of S the random variable is T S' *<T,f> where <,> is the _
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duality between S and S', its topological dual. As IL (f) and <.,f> have the

same probability law, E (<.,f>) = 0 and Vf,g E SP

E (<-,f><-,g>) F(f,g) = f dn(z) f()g(r)d

The application f E S - <.,f> E 1,2 (S',S',P) is linear and continuous for the

2 n ntopology of L (IR ,R ,dT). We denote f dL the unique extension of this appli-

2 n n 2
cation from the Hilbert space L (R ,R ,dT) to the Hilbert space L (S',S',P).

For Borelian B of Rn , the application 1 E L 2(Rn Rn dt) - f 1dL E L2 (S'S'P)

is a vectorial measure.

We suppose now that the IL -measure is the process

[L = (S',S',P, (ffdL)s, a C).

Instead of a general probability space (Q,A,P a) the continuity of IL on S and

athe theorem on cylindrical measures, specify (Q,A,Pa) into (S',S',P).

111.3 Expression of the Solution X

The Fourier transform is defined in the introduction. We consider

equation DX = dT in distribution meaning Vf E S <DX,O> =<T,>

We limit D to be linear operators such a3

(a) F-D = AF

(b) A has derivatives of any orders

(c) multiplication by A is a linear operator on S

(d) the closed set F = {T E R ;A(i)=O) is Lebesgue almost surely null.

Let 0 = T E R n ;A(T) # 0) the complement of F and let T F(D(0)) where D(o)

is the distribution space of the functions with derivatives of any order and

with compact supports in 0. We observe that T is dense in L2 (Rn ,Rn ,d).

We introduce the definition (D. De Brucq and C. Olivier [5]).

Definition 111.3.1: A solution X of DX = dT in strong distribution meaning,

is a process



-17-

X (S',S' P, (X(f))r C, such as

Vfg T DX(f) = <T,f> P - almost surely.

We obtain the very general theorem

Theorem 111.3.2: For any probability P on (S',S') the solution X in strong

distribution meaning of

DX = dT

with D satisfying properties a), b), c), d) is linear and given by

vf c T X(f) = <T, F f

Proof: For f in T = F.(P(O)), the function F Ffj is also in T dense subspace
of S. Then VT 6 S' < T, F (LfI>is defined. Moreover we note D* the adjoint

of D, then

DX(f) =X(D*f) <T, Ff [JJ ,A

= <T,F A f>= <T, Tf >=<Tf>
A

When the process

(SI',S"', (<*,f>)TA ,C > is additive

we note <T,f> = J~fdT. With EL-measure, the characteristic function of the

solution X is known:

Theorem 111.3.3: The characteristic function 4, of the solutionx

x = (S',SP, (jfdL)T(C,C)

of the equation DX = dL with the prior hypothesis on the linear operator 1)

and on the EL -measure, is given by

log 4 Xf= n.' [exp i zFrr) -l-iz Frfjdn(z)di

F Iz1>O

Proof: The solution X is
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Vf ( T X(f) f -F(.FdL = LiF (T~ ]
with F Ff] inS and we apply property b of Definition I1.. l.

Corollary 111.3.4: The covariance 1' of the solution X is given by Vf, gr T

f,g) = EXf)x(g)) = f-----. F g d, f z dn(z)

Proof: F(f,g) = E[fFL]d.

n -[F TE dT f z2 dn(z) from Proposition 111.1.2.

,R [Aln I AI2 i>

1 f Ff E dT f z2dn(z) from Parseval's theorem. n

(2,) R -A lzH>O

The covariance F gives the power spectral density function

S(T) 1 If0z 2 dn(z)
(2 )" n A(TI[12

An application in the spatio-temporal space R 4 shows how to use this result.

We define the spatial correlation at a given frequency v; in this space, the

power spectral density function takes the form
f h dn(h)

I lhl>o h nh
s(w),l,,) = I

(27~ jA(w0,C,n,C) 12

with the Fourier transform

F(f) (",,r f 4 ei(-wt+x+ny Yz)f(t,x,y,z)dtdxdydz
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Definition 111.3.5: For the solution X of the spatio-temporal equation

DX = dL, the covariance function at a given frequency v = is the function

s(wx,y,z) = 1 fh h2dn(h)f ei(x +Yn+ZO)

We nte cA flhI>Ohzdn(h )

We note c 2 a normalization factor. We consider the linear
(27r)2

partial derivative operator

D = Ak , j -1 ) with p E I and ak j E E
k=O k t

We obtained FD = AF with

A = [(-I)k( 2+2+C Ot k,j(-i)lJ]
k=O

Properties a), b), c), d) for D are checked easily. We observe that A is
invariant by rotations of R, and is function of K2 22+2 Then

P

A(w,x) = I (-[l)kKk[t.ak j(-i)JwJ] is algebraic in K with 2p complex roots
k=O 3

P 2_ 2Xk(w), -Xk(u)), k=l,2,...,p and A(w,K) = I p k 2( Xk with

1p(wO) A_ (_1 )p [a .(_l)J
p pp M (-l i fj 'J )

In that case, it is possible to perform the integrations that appear in the

expression of the function s.

Theorem 111.3.7: In the spatio-temporal space R , the covariance function s

at a given frequency of the solution X of the equation DX = dL with

P kl aJ

D =k (ak, t p 
E 1ck j E (1j

is equal to
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p -bk 9eia k z -iakZ7

s(, 21 ) 2p kO bk 2aki d k  k-

w a2 2 2
where a) Z2 = x +y +z

2 P 2_ 2 2_-2

b) A = a -ib ak 0 b > 0 and A(w,K) =p (K X)(K X
k k kk k Pk=1l

p 22 22
dk = H (X- Aj)(k- A) if p 1 and dl = 1.

j=1
j$k

We have supposed the roots Xk in the complex plane with bk strictly positive;

it is the analog of a > 0 in Proposition H1.2.4.

Proof: The theorem is known for p=l (D. de Brucq [41). We have to compute

i(xc+yq+z;)s(,I,x,y,z) = c f e d~dpdi

with lA(w,rI 2 = lp2 (K
2 -Xk)(K 2 -X) We used spherical coordinates and

k=l

(1.1. Gihman and A.V. Skorohod [7])

s (IL' ,,yz C c f4y e i K dX
s y = I A = e IA(U),K) 12

let f(K) A iKe and J A=f+ f(K)dK

(K 2 k) 2 -2

k=l

we perform the integration using residual method. The p p~les are strictly

complex by hypothesis and Xk = a k+ib -A = a k+ib k=l,2, .. 'p are the

poles in the upper half plane. Then

P
s= 2i1 I [Res(ffk)+Res(f,-Xk). We have

k=l
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iXkz
Xeke

Res(f,,Tk) k k 1

9 2 - 2Ak
PT1 k '2 k Zk- ) X_ k)9=1

tkk

X as X2 = 4iakb
P -2 2)(X2 2 8iakb k k kk

Ti (X k 3 (k- X)k
q=1
Z#k

e b and also
dk 8akb

k

Res(f, -N e 1
dk -8iakbk

Going back to the expression of s, we find

I 1s(w,x,y,z) =clv2

c2ifl 1 Ve k e _ .

2 2 .iz k=l 8iakbk Ldk dk

For Gaussian measures, for Poisson measure, results of 111.1 and 111.2 are

valid and we have equivalent processes on (S',S',P). These processes are

linear and for every f in L 2(I n ,Rn di) the characteristic functions are

given by

log E(e if-j(f)) -I fn 2 fl 2dT and log E(eiN(f)) = n (exp if-l-if)d,,
1R it

%Ai
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These centered processes and the UL-measures have the same correlation function.

Every forcing terms of these types, give solution X with the same second order

properties! Moments of greater order are necessary to make differences between

the forcing terms. For p 1

c e sin k where k-iy is the complex wave

21 12,111

number. Direct verification in deep sea water of this formula is factible:

k(wL) is the wave number at pulsation ,

'(.) is the dumping term at pulsation (j.

For two points at a distance k, the correlation of the filtered observations

at frequency v of the pressure p is the function s(<,Q). The main assumption

to obtain the result is that p satisfies any equation

--. p + O,j = dL

with I. Gaussian, Poisson, or any centered Levy-measure!

IL
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